Brookhaven Super-Neutrino Beam Scenario

Steve Kahn

Representing Ideas of

M. Diwan, S. Kahn, K. McDonald, R. Palmer, Z. Parsa

Staging a Neutrino Factory

- Two feasibility studies for a **Neutrino Factory** have been performed.
 - These studies indicate a cost of 2-2.5 B\$.
 - This kind of money may not be available in the current climate
 - They indicate an optimistic turn-on date of 2012.
 - We might like to do some physics before that.
- A staged approach to building a Neutrino Factory maybe desirable.
 - First Phase: Upgrade AGS to 1 MW
 - Second Phase: Build pion capture system.
 - Third Phase: Build phase rotation and part of cooling system.
 - Fourth Phase: Finish Neutrino Factory.
- Each phase can support a physics program.
 Snowmass
 July 7,2001

First Phase Super Neutrino Beam

Upgrade AGS to 1MW Proton Driver:

Machine	Power	Proton/Pulse	Repetition Rate	Protons/Snowmass year
Current AGS	0.23 MW ???	6×10^{13}	0.625 Hz	3.75×10^{20}
AGS Proton Driver	1 MW	1×10^{14}	2.5 Hz	2.5×10^{21}
Japan Hadron Facility	0.77 MW	3.3×10^{14}	$0.29~\mathrm{Hz}$	9.6×10^{20}
Super AGS Prot Driver	4 MW	2×10^{14}	5.0 Hz	1.0×10^{22}

- Both BNL and JHF have eventual plans for their proton drivers to be upgraded to 4 MW.
- Build Solenoid Capture System:
 - 20 T Magnet surrounding target. Solenoid field falls off to 0.1 T in 45 m.
 - This magnet focuses both π^+ and π^- . Beam will have both ν and ν
 - A solenoid is more robust than a horn magnet in a high radiation.
 - A horn may not function in the 4 MW environment.
 - A solenoid will have a longer lifetime since it is not pulsed.

Solenoid Capture

Sketch of solenoid arrangement for Neutrino Factory

- •If only ν and not $\bar{\nu}$ is desired, then a dipole magnet could be inserted between adjacent solenoids above.
- •Inserting a dipole also gives control over the mean energy of the neutrino beam.

Captured Pion Distributions

Detector Choices

- The far detector would be placed 350 km from BNL (near Ithica, NY).
 - There are salt mines in this area. One would put the detector 2 km below ground.
- We are favoring Liquid Ar TPC similar to *Icarus*. The far detector would have 50 ktons fiducial volume (65 ktons total.)
 - Provides good electron and π° detection.
 - The detector will sit between dipole coils to provide a field to determine the lepton charge.
- Close in 1 kton detectors at 1 km and/or 3 km.
 - 1 km detector gives v beam alignment and high statistics for detector performance.
 - 3 km detector is far enough away that v source is a point.

Detectors Are Placed 1.5° Off v Beam Axis

- Placing detectors at a fixed angle off axis provides a similar E_v profile at all distances.
- It also provides a lower E_v distribution than on axis.
- μ from π decays are captured by long solenoid channel. They provide low E_{ν} enhancement.
- Integrated flux at each detector:
 - Units are $v/m^2/POT$

Detector Position	ν_{μ}	Anti ν_{μ}	$v_{\rm e}$	Anti ν _e
At 1 km	1.88×10^{-2}	1.53×10^{-2}	1.75×10^{-4}	1.26×10^{-4}
At 3 km	2.07×10^{-3}	1.67×10^{-3}	1.75×10^{-5}	1.36×10^{-5}
At 350 km	1.49×10^{-7}	1.4×10^{-7}	9.27×10^{-10}	9.27×10^{-10}

Neutrino Oscillation Physics

- The experiment would look at the following channels:
 - v_{μ} disappearance -- primarily $v_{\mu} \rightarrow v_{\tau}$ oscillations.
 - Sensitive to Δm_{23}^2 and θ_{23}
 - Examine ratio of $vn \rightarrow \mu p$ (QE) at 350 km detector to 3 km detector as a function of E_{ν} .
 - $vN \rightarrow v\pi^{o}N$ events
 - These events are insensitive to oscillation state of v
 - Can be used for normalization.
 - V_e appearance
 - (continued on next transparency)

v. Appearance Channel

- There are several contributions to $P(v_u \rightarrow v_e)$:
 - Solar Term: $P_{\text{solar}} = \sin^2 2\theta_{12} \cos^2 \theta_{13} \cos^2 \theta_{23} \sin(\Delta m_{\text{sol}}^2 L/4E)$
 - This term is very small.
 - Tau Term: $P_{\tau} = \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 (\Delta m_{atm}^2 L/4E)$
 - This is the dominant term.
 - Terms involving the CP phase δ :
 - There are both CP conserving and violating terms involving δ .
 - The CP violating term can be measured as

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})} \approx \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \sin \delta$$

- This asymmetry is larger at lower E_v . This could be ~25% of the total appearance signal at the optimum E_v
- The 4 MW proton driver would be necessary for this asymmetry

Event Estimates Without Oscillations

- Below is shown event estimates expected from a solenoid capture system
 - The source is a 1 MW proton driver.
 - The experiment is run for 5 Snowmass years. This is the running period used in the JHF-Kamioka neutrino proposal.
 - These are obtained by integrating the flux with the appropriate cross sections.

Detector Position	$v_{\mu}n\rightarrow \mu^{-}p$	$\bar{\nu}_{\mu}p{\rightarrow}\mu^{\dagger}n$	$\nu N \rightarrow \nu N \pi^{\rm o}$	$v_e n \rightarrow e^- p$	$\bar{\nu}_{e}p \rightarrow e^{+}n$
At 1 km	2.14×10^7	5.31×10^6	3.02×10^{6}	2.97×10^{5}	71100
At 3 km	2.37×10^6	5.81×10^{5}	3.35×10^{5}	2.95×10^4	7690
At 350 km	9050	2440	1361	108	28.3

• Estimates with a 4 MW proton driver source would be four times larger.

Cosmic Ray Background

- This table shows the cosmic ray rates for a detector placed on the surface.
 - The rate reduction factors come from the E889 proposal.
 - The events shown are scaled to the 350 km detector mass and 5
 Snowmass year running period.

	Muons	Neutrons
Raw Rate (kHz)	81.7	2.7
Beam Time Correlation Reduction	2.5×10^{-7}	2.5×10^{-7}
Passive/Active Shielding	0.001	0.18
Energy Cuts	0.47	0.26
Vertex and Direction Info	0.0033	0.062
Total Reduction	3.9×10^{-13}	7.2×10^{-10}
Background in 5×10^7 sec	34	2280

- The detector will be placed 2 km below ground in a mine.
 - The residual cosmic ray background would be ~ 0.002 events.

Backgrounds to v_e Appearance Signal

- The largest backgrounds to the $v_{\mu} \rightarrow v_{e}$ signal are expected to be:
 - $-v_e$ contamination in the beam.
 - This was $\sim 1\%$ in the capture configuration that was used in this study. It can be made smaller as I previously discussed. This could be $\sim 0.5\%$
 - Neutral Current $\nu\pi^{\circ}N$ events where the π° are misidentified as an electron.
 - If a γ from the π° converts close to the vertex (Dalitz decay) and is asymmetric.
 - The magnetic field and dE/dx will be helpful in reducing this background. Simulation study is necessary.
 - I estimate (guess) that this background is ~ 0.001 of the $\nu \pi^{\circ} N$ signal.

Conclusions

- A high intensity neutrino super beam maybe an extremely effective way to study neutrino oscillations.
 - In particular the 4 MW version of the super beam may be the only way to observe CP violation in neutrino oscillations without a *Muon Ring Neutrino Factory*.
- This experiment is directly competitive with the JHF-Kamioka neutrino project.
 - Do we need two such projects? I will not answer that!
- At this point this is a *Snowmass Study*. We have only invested a few man-weeks in it.